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We investigate the quantum walk and the quantum kicked rotor in resonance subjected to noise with a Lévy
waiting time distribution. We find that both systems have a sub-ballistic wave function spreading as shown by
a power-law tail of the standard deviation.
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I. INTRODUCTION

In the last decades the study of simple quantum systems,
such as the quantum kicked rotor �QKR� �1� and the quan-
tum walk �QW� �2�, have exposed unexpected behaviors that
suggest new challenges both theoretical and experimental in
the field of quantum information processing �3�. The behav-
ior of the QKR has two characteristic modalities: dynamical
localization �DL� and ballistic spreading of the variance in
resonance. These different behaviors depend on whether the
period of the kick is a rational or irrational multiple of 4�.
For rational multiples the behavior of the system is resonant
and the average energy grows ballistically and for irrational
multiples the average energy of the system grows, for a short
time, in a diffusive manner and afterwards DL appears.
Quantum resonance is a constructive interference phenomena
and DL is a destructive one. The DL and the ballistic behav-
ior have already been observed experimentally �4,5�. On the
other hand the concept of QW introduced in �6,7� is a coun-
terpart of the classical random walk. Its most striking prop-
erty is its ability to spread over the line linearly in time, this
means that the standard deviation grows as ��t�� t, while in
the classical walk it grows as ��t�� t1/2. We have developed
�8,9� a parallelism between the behavior of the QKR and a
generalized form of the QW showing that these models have
similar dynamics. In �10� we have investigated the reso-
nances of the QKR subjected to an excitation that follows an
aperiodic Fibonacci prescription; there we proved that the
primary resonances retain their ballistic behavior while the
secondary resonances show a sub-ballistic wave function
spreading ���t�� tc with 0.5�c�1� like the QW with the
same prescription for the coin �11�. Casati et al. �12� have
studied the dynamics of the QKR kicked according to a Fi-
bonacci sequence outside the resonant regime, they found
subdiffusive behavior for small kicking strengths and a
threshold above which the usual diffusion is recovered. More
recently Schomerus and Lutz �13� investigated the QKR sub-
jected to a Lévy noise �14� and they showed that this deco-
herence never fully destroys the DL of the QKR but leads to
a subdiffusion regime for a short time before DL appears.

In this Brief Report we investigate the QKR in the reso-
nant regime and the usual QW when both are subjected to
decoherence with a Lévy noise. In the case of the QKR the

model has two strength parameters whose actions alternate in
a such way that the time interval between them follows a
power-law distribution. In the case of QW the model uses
two evolution operators whose alternation follows the same
power-law distribution. We show that this noise in the sec-
ondary resonances of the QKR and in the usual QW pro-
duces a change from ballistic to sub-ballistic behavior. This
change of behavior is similar to that obtained for both sys-
tems when they are subjected to an aperiodic Fibonacci ex-
citation �10,11�.

The Brief Report is organized as follows. In the next three
sections we develop the two quantum models, QKR and QW,
with Lévy noise. In the last section we draw the conclusions
of this work.

II. LÉVY DISTRIBUTION

We consider two time step unitary operators U0 and U1 in
a large sequence to generate the dynamics of the quantum
system. The time interval for the alternation of U0 and U1 is
generated by a waiting time distribution ���T�, where �T
=nT with T a time step and n an integer. Then n is the
number of times that U0 is repeated before U1 is applied
once, e.g., the sequence of operators when the first interval is
�T1=4 T and the second is �T2=2T, is
U1U0U0U1U0U0U0U0. In this Brief Report we take ���T� in
accordance with the Lévy distribution This distribution ap-
pears frequently in nonlinear, fractal, chaotic, and turbulent
phenomena �15–17�, it includes a parameter �, with 0��
�2, and it is identical to the Gaussian distribution when �
=2. When �T is large the asymptotic behavior of ���T� is
�1/�T�1+�, this implies that the second moment of ���T� is
infinite when ��2 and then there is no characteristic size for
the temporal jump, except in the Gaussian case. It is just this
absence of a characteristic scale that makes Lévy random
walks scale-invariant fractals. As we are interested in the
asymptotic behavior of the QKR and QW, the most impor-
tant characteristic of the Lévy noise is the power-law shape
of the tail. To capture the essence of the Lévy noise distri-
bution, and simplify at the same time the numerical calcula-
tion, we define the waiting time distribution as

��t� =
�

�1 + ��T� 1, 0 � t � T

�T

t
��+1

, t 	 T . 	 �1�

Then, the mechanism to obtain the time interval �T in agree-
ment with the previous discussion is the following: �a� we*Corresponding author. alejo@fing.edu.uy
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sort a stochastic variable 
 with uniform distribution in �0,1�,
�b� we obtain � as a solution of the equation 
=
0

���t�dt, and
finally �c� �T=nT where n is the integer part of �.

III. QUANTUM KICKED ROTOR

The QKR Hamiltonian is

H =
P2

2I
+ K cos ��

n=1



��t − nT� , �2�

where the external kicks occur at times t=nT with n an in-
teger and T the kick period, I is the moment of inertia of the
rotor, P the angular momentum operator, K the strength pa-
rameter and � the angular position. In the angular momentum
representation, P��=����, the wave vector is ���t�
=��=−

 a��t���, and the average energy is E�t�= ���H��
=���=−

 �2�a��t��2, where �=�2 /2I. Using the Schrödinger
equation the quantum map is readily obtained from the
Hamiltonian �2�,

a��tn+1� = �
j=−



U�jaj�tn� , �3�

where the matrix element of the time step evolution operator
U��� is

U�j = i−�j−��e−ij2�T/�Jj−���� , �4�

Jm is the mth order cylindrical Bessel function and its argu-
ment is the dimensionless kick strength ��K /�. The reso-
nance condition does not depend on � and takes place when
the frequency of the driving force is commensurable with the
frequencies of the free rotor. Inspection of Eq. �4� shows that
the resonant values of the scale parameter ���T /2� are the
set of the rational multiples of 4�, i.e., �=4�p /q. In what
follows we assume that the resonance condition is satisfied,
therefore the evolution operator depends on �, p, and q. We
call a resonance primary when p /q is an integer and second-
ary when it is not.

With the aim to generate the dynamics of the system we
consider two values of the strength parameter �1 and �2 and
combine the corresponding time step operators U0=U��1�
and U1=U��2� in a large sequence. We have proved in �10�
that the ballistic behavior is maintained in the primary reso-
nances for any type of sequences of the operators U0 and U1
because the operators U0 and U1 commute. For the same
reason the antiresonance p /q=1/2 is not changed. Then we
only need to study the secondary resonances in this work.

Using the operators U0, U1 and the waiting time distribu-
tion �1� we obtain the wave function spreading as given by
the exponent c of the asymptotic expression of the standard
deviation ��t�=���=−

 �2�a��t��2� tc. The initial condition
for the wave vector is the position eigenstate �0, that is
a0�0�=1. The average standard deviation ��t� is numerically
obtained running a code with an ensemble of 10 000 trajec-
tories for several thousands of T. Equation �5�

p/q 1/3 1/4 1/5 2/5

c 0.87 0.92 0.59 0.89,
�5�

shows that c depends on the ratio p /q. It is calculated with
�1=0.5, �2=−0.5, and �=1. The value of c remains un-
changed when p /q is changed for �q− p� /q; this symmetry in
c being a consequence of the trivial symmetry of the time
step evolution operator U as was shown in �10�. We have
verified that the exponent c has a dependence with the
strength parameters �1 and �2 and its range is always be-
tween 0.5 and 1, thus the sub-ballistic behavior is main-
tained. In Fig. 1 ��t� is plotted for several values of the
parameter �, displaying the qualitative differences between
the periodic case ���0,c�1�, the Lévy noise case �0��
�2 and 0.5�c�1�, and the Gaussian case ���2,c�0.5�.
The exponent c is plotted in Fig. 2 as a function of � show-
ing a clear dependence of c with �. We have also studied
higher moments of order four and six, they all have smaller
exponents than those obtained with a periodical sequence,
thus the asymptotic behavior of these moments is consistent
with the power-law behavior of the second moment.

IV. QUANTUM WALK

The standard QW corresponds to a one-dimensional evo-
lution of a quantum system �the walker�, in a direction which
depends on an additional degree of freedom, the chirality,
with two possible states: “left” �L or “right” �R. The global
Hilbert space of the system is the tensor product Hs � Hc
where Hs is the Hilbert space associated to the motion on the
line and Hc is the chirality Hilbert space. Let us call T− �T+�
the operators in Hs that move the walker one site to the left

FIG. 1. The standard deviation for the QKR as a function of
time in units of T, with the parameters �1=1, �2=−1, and p /q
=1/3. �I� �=0.2 and c=0.998; �II� �=1 and c=0.772; and �III� �
=2 and c=0.518.
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�right�, and �L�L� and �R�R� the chirality projector operators
in Hc. We consider the unitary transformations

U��� = �T− � �L�L� + T+ � �R�R�� � �I � K���� , �6�

where K���=�ze
−i��y, I is the identity operator in Hs, and �y

and �z are Pauli matrices acting in Hc. The unitary operator
U��� evolves the state in one time step, ���t+1�
=U������t�. Here we are generalizing the QW to the case
where different quantum coins are applied as in �11�. As for
the QKR, we combine two different step operators U0
=U��1� and U1=U��2�, with �1��2, into a large sequence
where we apply the same Lévy waiting time distribution. The
wave function spreading is given by the exponent c in ��t�
=��i=0

 i2��ai�t��2+ �bi�t��2�� tc. We take as the initial condi-
tion for the QW the position eigenstate �0, with chirality �1,
0� for the calculations of Figs. 3 and 2, and �1, i� /�2 for the
calculations of Fig. 4. The standard deviation ��t� is numeri-
cally obtained for an ensemble of 1000 trajectories for each
value of the parameter � of the Lévy distribution. In Fig. 3
��t� is plotted for different values of � and the sub-ballistic
behavior is clearly shown. In Fig. 2 c is plotted as a function
of the parameter �, here a functional dependence between
them is evident. In Fig. 4 c is plotted as a function of �,
where �=�1=−�2. This figure shows that the range of c is
always �0.5, 1�, thus the sub-ballistic behavior is independent
of the value of � �except for the trivial cases �=0, �=� /2�;
additionally this figure is in concordance with Fig. 3 in Ref.

�11�. These figures show qualitative similarities with the cor-
responding figures for the QKR and point to the parallelism
between the QW and the QKR in the secondary resonance
regime. Again in this system, the moments of order four and

FIG. 2. The exponent c of the power law of the standard devia-
tion as a function of the parameter �. �I� The black dots correspond
to the QKR with �1=1, �2=−1, and p /q=1/3, the full line is an
adjustment. The parameters for the QKR are �II� the white dots
correspond to the QW with �1=� /3, �2=� /6, the dashed line is an
adjustment.

FIG. 3. The standard deviation for the QW as a function of time
in units of T with the parameters �1=� /3 and �2=� /6. �I� �=0.2
and c=0.988; �II� �=1 and c=0.71; and �III� �=2 and c=0.546.

FIG. 4. The exponent c that characterizes the power law of the
standard deviation for the QW as a function of the parameter �. The
evolution is obtained with �=�1=−�2 in the interval �0,� /2�. The
dots correspond to the calculation and the full line is a polynomial
adjustment
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six are consistent with the power-law behavior of the second
moment.

V. CONCLUSION

The quantum resonances and the DL of the QKR have
been experimentally observed in samples of cold atoms in-
teracting with a far-detuned standing wave of laser light
�18–20� and in particular the secondary resonances have
been recently observed by Kanem et al. �5�. On the other
hand several systems have been proposed as candidates to
implement the QW model. These proposals include atoms
trapped in optical lattices �21�, cavity quantum electrody-
namics �22�, and nuclear magnetic resonance in solid sub-
strates �23,24�. All these proposed implementations face the
obstacle of decoherence due to environmental noise and im-
perfections. Thus the study of the behavior of these systems,
subjected to different types of noise, is very important for the
design and construction of future technologies. Here we pro-
posed the study of the QKR and QW subjected to noisy
pulses with a Lévy waiting time distribution. As Gaussian
noise is a particular case of the Lévy noise, then our study is
open to wider experimental situations. We prove that for
QKR and QW the Lévy noise does not break completely the
coherence in the dynamics but produces a sub-ballistic be-

havior in both systems, as an intermediate situation between
the ballistic and the diffusive behavior. Then QKR and QW
have essentially the same dynamical evolution and our re-
sults fortify the previously established parallelism between
them �8–10�. More generally we can say that the dynamical
evolution of the QKR and QW show certain patterns that
seem to be common to a greater class of systems that are
defined mainly by their symmetries and not by their micro-
scopic details. The existence of a universality in the behavior
of these systems suggests that one is allowed a larger flex-
ibility in the choice of the physical systems to build quantum
computers. It is important to highlight that the sub-ballistic
behavior obtained in this Brief Report for the QW and the
QKR is essentially the same as that obtained for these sys-
tems when the perturbation follows a Fibonacci prescription
�11,10�. The reason may lie in the fact that behind the Fi-
bonacci prescription hides the lack of a typical scale in the
sequence of the operators U0 and U1 which leads to a power
law �25� in the standard deviation, in the same way as for the
Lévy noise.
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